
Solving Quadratic Assignment Problems

With Parallel Genetic Algorithms

Jerri Hines

John T. Thorpe � Frederick C. Harris, Jr.

Department of Computer Science Department of Computer Science

University of Nevada

Kenneth B. Winiecki, Jr. y Reno, Nevada 89557

Department of Electrical Engineering fredh@cs.unr.edu

Clemson University

Clemson, South Carolina 29634

Abstract

Parallel processing has been valuable for improv-
ing the performance of many algorithms and is at-
tractive for solving intractable problems. Tradition-
ally, exhaustive search techniques have been used to
�nd solutions to NP-complete problems; however, par-
allelization of exhaustive search algorithms can pro-
vide only linear speedup, which is typically of little
use since problem complexity increases exponentially
with problem size. Genetic algorithms can help to pro-
vide satisfactory results to such problems. This paper
presents a genetic algorithm that uses parallel process-
ing to solve the quadratic assignment problem.

keywords: Quadratic Assignment Problem, Par-
allel Genetic Algorithms

1 Introduction

Parallel processing has proven to be valuable for
increasing the performance of various algorithms. In-
tractable problems traditionally solved by exhaustive
search techniques seem to resist the speedup typ-
ically produced by parallelization. Algorithms for
these problems, when run in parallel, typically give
a speedup only directly proportional to the number of
processors working in concert on the problem. This
paper presents an alternative to traditional exhaus-
tive search methods using a variation on genetic algo-
rithms [1, 3].

�Current Address: Common Development Team, AT&T
Global Information Solutions, Greenville, SC 29615,
John.Thorpe@ClemsonSC.ATTGIS.COM

yCurrent Address: Loral Aerosys, NASA Goddard Space
Flight Center Greenbelt, MD 20771 kwiniec@vlsi9.gsfc.nasa.gov

In the early 1970's John Holland at the University
of Michigan developed a heuristic search technique
he termed a genetic algorithm [3]. Because they are
heuristic techniques, genetic algorithms are not guar-
anteed to �nd optimal solutions to complex systems,
but rather to �nd \satisfactory" ones. A satisfactory
result is de�ned by the problem and by how close to
the optimal solution the user deems acceptable. It
is hoped that using genetic algorithms in parallel can
produce acceptable results in a \reasonable" amount
of time, as good as or better than exhaustive search
techniques can in that same time.

NP-complete problems are a class of decision prob-
lems that are considered intractable; i.e., solutions
to these problems probably will not be found with
a polynomial time algorithm. Although it has not
been proven whether or not NP-complete problems
are truly intractable, it appears that a major break-
through is necessary to solve them in polynomial time.
The quadratic assignment problem has been classi�ed
as an NP-complete problem that is a transformation
of the HAMILTONIAN CIRCUIT problem [2]. For a
more complete overview of NP-completeness and for a
list of known NP-completeness problems see [2]. For
more work on NP-Complete problems see Johnson's
series of NP-Completeness Columns [5].

The purpose of this paper is to demonstrate the ef-
fectiveness of using genetic algorithms along with par-
allel processing to obtain good solutions for large or
intractable problems. The problem chosen to demon-
strate this e�ectiveness is the quadratic assignment
problem. Simply stated this problem involves the
placement of m production plants at n sites so as to
minimize transportation costs between them.

In Section 2 the backgrounds of the quadratic as-



signment problem and genetic algorithms are pre-
sented. Section 3 explains the heuristic used to solve
the problem. Results and conclusions are presented in
Section 4, and future work is presented in Section 5.

2 Background

Quadratic Assignment Problem

The problem chosen is known as the Quadratic As-
signment Problem (QAP). Consider the problem of
placing each of m plants at one of n possible sites
such that the total cost of transporting materials from
one site to another is minimized. Each plant must be
placed at some site, and at most one plant may be
placed at a single site. Let di;j be the number of items
to be transported from site i to site j, let ci;j be the
cost of transporting a single item from site i to site j,
and let

A = (�(1); �(2); : : : ; �(m))

be a mapping of plants to sites where 1 � �(i) � n is
the site at which plant i is located. The objective is
to �nd a mapping A such that the cost

F (A) =
mX
i=1

mX
j=1

(di;jc�(i);�(j))

is minimized.

The following example is taken from Horowitz and
Sahni [4]. Assume two plants (m = 2) and three pos-
sible sites (n = 3). Also assume:

�
d1;1 d1;2
d2;1 d2;2

�
=

�
0 4
10 0

�

and

0
@ c1;1 c1;2 c1;3

c2;1 c2;2 c2;3
c3;1 c3;2 c3;3

1
A =

0
@ 0 9 3

5 0 10
2 6 0

1
A

Sample placement of the plants at sites and their
corresponding costs are shown in the table below. The
third row represents the optimal solution.

�(1) �(2) F

1 2 9� 4 + 5� 10 = 86
3 1 2� 4 + 3� 10 = 38
1 3 3� 4 + 2� 10 = 32

Genetic Algorithms

Genetic algorithms were �rst developed by John
Holland at the University of Michigan in the early
1970's. Holland was interested in how an algorithm
could simulate natural selection. The goals of Hol-
land's research included explaining the adaptive pro-
cesses of natural systems and then designing arti�cial
systems software which would retain the important
mechanisms of natural selection [3]. Thus, the power
of genetic algorithms should lie in their robustness, or
ability to adapt, just as in natural systems.

Genetic algorithms are heuristic search algorithms.
Thus, the goal of a genetic algorithm is not necessarily
to �nd the optimal solution to a complex system, but
to produce a \satisfactory" one. Random choice is
used to guide a genetic algorithm as it searches. As
a genetic algorithm iterates, better solutions may be
discovered.

The structure of a genetic algorithm is based on
natural selection. First, an initial population of feasi-
ble solutions is randomly generated. The initial pop-
ulation consists of \chromosomes," encoded represen-
tations of solutions. \Selection" takes place between
members of the population, and a \child" is formed
from a combination of the \parent" chromosomes. For
each new child an evaluation function is used to deter-
mine the \�tness" of that child. Whether or not the
child becomes a member of the population depends on
its �tness value. Each new child chromosome is com-
pared against the worst member of the population,
and the better one is kept in the population. By pro-
ducing new generations in this manner, the population
improves and the best member of the �nal population
is the solution returned by the algorithm.

A chromosome is traditionally a binary string. Ac-
cording to Goldberg [3], genetic algorithms should be
blind to the application; that is, the genetic algorithm
should have no information as to what the bit string
represents. Davis [1], on the other hand, suggests that
close inspection of the encoding can give clues as to
what makes a good solution \good" and what makes
a bad solution \bad" and can improve the quality of
the search by including this information in the genetic
algorithm.

Since they are based on genetics, major elements
of genetic algorithms include selection, recombination
and mutation. Selection is the process of choosing par-
ent chromosomes which will be recombined to form
the next generation. The choice of parent chromo-
somes can be completely random but is usually biased
in some manner so that better chromosomes are more
likely to be used as parents. Two popular biased ran-



dom number generators used with genetic algorithms
are linear bias and roulette wheel.

Recombination is the process of taking the parent
chromosomes and forminga child chromosome. Simple
methods for recombination include one-point crossover
and two-point crossover. In these methods a random
number is generated to correspond with one (or two)
positions in the encoded parent solutions, and then the
portions of the parent chromosomes around these po-
sitions are switched to form a child chromosome. The
one- and two-point crossover methods of recombina-
tion require no knowledge as to what makes a solution
good or bad.

Mutation is necessary in a genetic algorithm to pre-
vent the some potentially useful genetic material from
being ignored and can guide the search in new direc-
tions. Mutation occurs in a genetic algorithm at the
time of recombination. Mutation can take place by
randomly generating a child chromosome or by ran-
domly changing part of the encoding of a child chro-
mosome. As in nature, mutation generally occurs only
a small portion of the time.

Another feature of natural selection which is simu-
lated in a genetic algorithm is survival of the �ttest,
achieved through the use of an evaluation function.
When a child chromosome is evaluated for �tness, its
survival, in essence, is being determined. If the child's
�tness is not good enough for it to be inserted into the
population, then the child does not \survive". The
evaluation function used depends upon the particular
problem to which the genetic algorithm is being ap-
plied.

A genetic algorithm stops when it reaches conver-
gence or when it has run for a predetermined number
of iterations. Some de�nitions of convergence could in-
volve having all identical solutions in the population,
having all �tness values equal in the population, or
having all �tness values within a certain range of each
other. When convergence has occurred or when the
predetermined number of iterations has been reached,
the best solution is returned from the �nal population.

3 Method

Why use genetic algorithms implemented in paral-
lel to �nd solutions to the quadratic assignment prob-
lem? An initial attempt might be to use an exhaustive
search method to place plants at various cities and
then evaluate the resulting con�guration. For large
problem sizes (10 or more plants), this approach is ob-
viously time consuming and is not guaranteed to pro-

duce a satisfactory result within a reasonable amount
of time.

An alternative to the exhaustive search is a heuristic
such as a genetic algorithm. The premise of the ge-
netic algorithm is that by generating a large number of
solutions, or population, and continually recombining
the solutions, a satisfactory result will eventually be
produced through \survival of the �ttest" as \better"
results replace \worse" results. A genetic algorithm
working on a single processor may produce good re-
sults, but if multiple versions of the algorithm were
to operate in parallel in some cooperative fashion, it is
likely that the concurrent version would produce even
better results than the single processor implementa-
tion.

The algorithm used for the quadratic assignment
problem is basically a genetic algorithm with some
modi�cations that enhance its use on a parallel pro-
cessing system. For this experiment four nodes of a
parallel processing machine (in this case an iPSC/2)
are allocated to run the genetic algorithms. Each node
generates its own initial population and begins execut-
ing the genetic algorithm. Each iteration of the genetic
algorithm produces six children to evaluate and pos-
sibly insert into the node's population. A \mutant"
is generated periodically and inserted into the popu-
lation. Mutation is a technique to help prevent stag-
nation of the population. Once the genetic algorithm
meets one of its convergence criteria (time limit, num-
ber of iterations, di�erence in the cost between the
best and the worst solutions), the algorithm halts and
broadcasts its results to the host program. If all nodes
have converged to the same cost, the host stops and
reports the results.

As previously noted, the algorithm used does not
follow the traditional approach described by Gold-
berg [3] in which the entire population is replaced at
each iteration. Instead, a combination of Davis' and
Goldberg's approaches was used in which each genetic
algorithm uses a Davis-like approach to insert a few
new members into the population [1].

There is no strategy involved in creating initial pop-
ulations. The plants are randomly placed at the sites
and the cost of each con�guration is determined. Af-
ter the initial population is generated, the genetic al-
gorithm selects three sets of parent \chromosomes" to
recombine. Two set are chosen via a simple linear bias,
and the other is chosen from a normal distribution of
the best ten percent (10%) of the population. The rea-
son for this selection method is that using the \best"
parent for every generation was found to cause the
population to converge to local \best" solutions rather



than generating better solutions. In other words, the
population tended to be dominated by variations on
the best parent.

Genetic algorithms were originally designed for use
on single-processor machines. To take advantage of
parallel processing, a variation on traditional genetic
algorithms is in order. By allowing some sort of
\cross-pollination" of chromosomes between genetic
algorithms operating in parallel, information can be
shared, and it is hoped that the interaction will im-
prove performance of the genetic algorithms. This
modi�cation is logically consistent and exists in \real-
world" genetics.

A pollination rate P is set as a parameter to the
program, and each genetic algorithm sends a solution
to the host program once every P iterations. The host
then chooses the best solution and broadcasts it back
to all the nodes to use in their recombination. This
method of cross-pollination has provided exception-
ally better results then simply running four genetic al-
gorithms independently, an observation made by the
authors in preliminary work. One additional note:
when cross-pollination occurs too frequently, the pop-
ulations tend to converge very quickly, and rarely do
they produce a satisfactory result.

The recombination technique used in this work is
based on uniform order-based crossover presented by
Davis [1]. According to this recombination, a chromo-
some is a bit string that represents the contribution
of the parents to a child. A one in the bit string indi-
cates that the vertex corresponding to that bit index
will contribute to the construction of child 1, and a
zero indicates that the vertex will contribute to child
2. This bit string is generated randomly for each gen-
eration with parent 1 receiving the bit string and par-
ent 2 receiving its complement. Hence, child 1 is com-
posed of vertices marked with ones and child 2 is made
of vertices marked with zeroes. This type of chromo-
some recombination is illustrated in Figure 1. This
bit string is then used to determine the six children
(two from each pairing of the three parents). These
children are then evaluated by the cost function (our
�tness criteria) and inserted into the population if the
value returned is better than the worst member.

In prior versions of this program, convergence was
based upon three criteria: a 15 minute time limit, a
maximum number of generations, and the di�erence
between the best and the worst solutions in the popu-
lation. The major change that was made to the paral-
lel version of this algorithm (beside cross-pollination)
was the addition of a \second chance." Based upon
the performance of previous versions we decided that

0 1 0 1 0 11 1 10

Parent 1

.

..
.
..

.

..
.
..

.

..
t t t

1 0 1 0 1 00 0 01

Parent 2

1 11 1 11 1 1 1 1 Child 1

0 00 0 00 0 0 0 0 Child 2

HHjJ
JĴ




�
��*

?

-

J
J
J
J
J
JJ]

Population

Figure 1: Recombination of Chromosomes

better results could be produced if we took the top ten
members of a converged population and used them as
members of a completely new population. This new
population was then allowed to converge under the
same criteria as the original population. This second-
chance scheme is then repeated until one of the original
convergence criteria is met.

4 Results and Conclusions

The results shown in the following tables represent
the �rst time the convergent cost was produced. The
actual running time was, on average, about 10% longer
than when the best result was �rst produced. The best
result produced by the algorithm is indicated by a <=

in the right margin. Three di�erent problem sizes were
tried: 15, 20 and 30 points. The results for the two
larger problems are presented in Table 1 and Table 2
respectively.

The genetic algorithm implemented to address the
quadratic assignment problem produced results that
were on average good, but not perfect. This �nding is
consistent with the processes that genetic algorithms
attempt to model, i.e. \success begets success" but not
necessarily perfection. Therefore, the implementation
itself is a success.

The implementation exploited the parallelism of-
fered by the MIMD distributed-memory message-
passing machine (iPSC/2 Hypercube) in the forms of
cross-pollination, second-chance, and concurrent e�ort
(as previously described). It produced consistently
better results than the earlier non-parallel implemen-
tation. Also, the value of cross-pollination in achieving
better results was not conclusive (too much was bad,
but what amount is too little?).



Pop'n Mut. Linear Poll. Sol'n Num. Time
Size Rate Bias Rate Value Iter. (in sec.)

100 13 2.65 19 2656 425 17
200 13 2.65 19 2640 841 45
200 13 2.65 33 2598 838 36
200 13 3.10 19 2636 862 36
200 21 2.65 19 2674 857 49
300 11 3.00 33 2632 1337 79
350 13 3.75 33 2640 1616 80

375 13 3.75 33 2654 1438 59
400 13 2.65 19 2644 2004 104
400 11 3.00 33 2606 1964 113
400 11 2.00 33 2612 2630 130
400 11 4.00 33 2666 1296 81
400 9 3.00 33 2612 1789 104
400 13 3.00 33 2586 1967 116 <=

400 15 3.00 33 2604 2068 112
400 13 2.50 33 2664 1845 75

400 13 3.75 33 2602 1905 125
400 13 3.85 33 2622 1604 72
400 13 4.00 33 2632 2617 164

Table 1: Problem Size 20

The marriage of parallel processing and genetic al-
gorithms seems to be reasonably e�ective for obtain-
ing results for intractable problems. The method pre-
sented is somewhat crude; however, with re�nement
it appears to have the potential of becoming an even
more valuable problem-solving heuristic. As there was
no comparison between the presented algorithm and
an equivalent exhaustive search technique, few, if any,
conclusions can be made about the superiority of one
method over the other. The performance of a tra-
ditional exhaustive search for an optimal solution is
known to have a speedup linearly proportional to the
number of processors working in concert on the prob-
lem. Genetic algorithms do not guarantee optimal so-
lution and so do not provide speedup (in the technical
sense of the word); however, they can provide satisfac-
tory solutions in a short period of time, so the results
generated by this implementation indicate that the ge-
netic algorithm can be a valuable search tool.

5 Future Work

As with any project, extensions and modi�cations
can be made to increase utility and/or performance,
yet a further, and perhaps more signi�cant, experi-
ment would be to investigate and make use of the gen-
eral characteristics of \good" solutions. For instance,
the results produced by the program might have dis-
tinct characteristics which could be exploited in gen-
erating the initial population(s).

Pop'n Mut. Linear Poll. Sol'n Num. Time
Size Rate Bias Rate Value Iter. (in sec.)

200 15 2.65 19 6548 1336 78
200 10 2.65 19 6500 1099 63
200 10 3.00 19 6434 1053 57
300 15 2.65 19 6376 2568 177
400 10 2.65 19 6284 3402 232
400 10 2.65 25 6258 3120 174
400 5 2.65 25 6282 2777 255

400 5 2.65 22 6358 2693 184
400 5 2.65 28 6210 2657 160
400 5 2.65 30 6202 2402 170 <=

400 10 2.65 28 6338 2791 179
400 7 2.65 25 6250 3601 295
400 7 2.65 28 6346 3613 227
400 15 2.50 21 6340 2560 189

400 13 3.10 15 6360 1822 125
400 13 3.75 33 6268 2836 188

400 7 3.75 33 6418 1953 156
400 7 3.75 25 6370 2428 149
400 13 3.00 33 6358 3293 218

Table 2: Problem Size 30

Research into the representation of the solution
should also be performed. A genetic algorithm is only
as good as its solution representation, and it is not
clear that the one chosen for this implementation car-
ried as much �tness information as feasible. On the
other hand, a representation with more �tness infor-
mation may be unwieldy in some way. It is thus likely
that a compromise should be investigated, and it is
possible that the one used herein is the best one avail-
able.

References

[1] L. Davis, editor. Handbook of Genetic Algorithms.
Van Nostrand Reinhold, New York, 1991.

[2] M.R. Garey and D.S. Johnson. Computers and

Intractability: A Guide to the Theory of NP-

Completeness. W.H. Freeman and Company, New
York, 1982.

[3] D.E. Goldberg. Genetic Algorithms in Search,

Optimization, and Machine Learning. Addison-
Wesley, Reading, MA, 1989.

[4] L.S. Horowitz and F. Sahni. Fundamentals of Data

Structures in Pascal. Computer Science Press,
1987.

[5] D.S. Johnson. The NP-Completeness column: an
ongoing guide. Journal of Algorithms, 3(1):89{99,
March 1982.


